California Air Resources Board ### **Quantification Methodology** # California Air Resources Board Funding Agricultural Replacement Measures for Emission Reductions Program ### **California Climate Investments** FINAL November 9, 2018 ### Disclaimer: This tool is designed to calculate emission reductions, cost-effectiveness, and maximum grant amounts. While every effort has been exhausted and made to ensure that the calculations are accurate and consistent with applicable program guidelines, determining final project eligibility and verifying outputs generated by the tool is the responsibility of district staff. ### **Table of Contents** | Section A. | Introduction | 1 | |----------------------|---|----| | Methodo | ology Development | 2 | | Tools | | 3 | | Section B. | Methods | 4 | | Project ² | Туре | 4 | | General | I Approach | 4 | | A. | Weighted Emissions Reductions and Maximum Grant Amount of FAR Projects | | | B. | Emissions Reductions from On-Road Heavy-Duty Truck Replacement Repower Projects | | | 1. | GHG Equations | 8 | | 2. | Criteria and Toxic Air Pollutant Equations | 10 | | C. | Emissions Reductions from Off-Road Equipment Replacement and Repower Projects | 15 | | 1. | GHG Equations | 15 | | 2. | Criteria and Toxic Air Pollutant Equations | 20 | | D. | Emissions Reductions from Agricultural Pump Engines Replacement Repower Projects | | | 1. | GHG Equations | 24 | | 2. | Criteria and Toxic Air Pollutant Equations | 27 | | E. | Emissions Reductions from Zero-Emission Utility Terrain Vehicles Re | | | 1. | GHG Equations | 28 | | 2. | Criteria and Toxic Air Pollutant Equations | 30 | | F. | Emissions Reductions from Agricultural Trade-Up Pilot Projects | 31 | | 1. | GHG Equations | 31 | | 2. | Criteria and Toxic Air Pollutant Equations | 31 | | 1. | GHG Equations | 32 | | 2. | Criteria and Toxic Air Pollutant Equations | 32 | | G. | Emissions Reductions from 2 (or-more) for-1 Off-Road Equipment Replacement and Repower Projects | 33 | | 1. | GHG Equations | 33 | | 2. | Criteria and Toxic Air Pollutant Equations | . 36 | |-----------|--|------| | Section C | References | . 37 | | | | | | | | | | Table 1.(| General Approach to Quantification by Project Type | 5 | ### **Section A. Introduction** California Climate Investments is a statewide initiative that puts billions of Cap-and-Trade dollars to work facilitating greenhouse gas (GHG) emission reductions; strengthening the economy; improving public health and the environment; and providing benefits to residents of disadvantaged communities, low-income communities, and low-income households, collectively referred to as "priority populations." Where applicable and to the extent feasible, California Climate Investments must maximize economic, environmental, and public health co-benefits to the State. The California Air Resources Board (CARB) is responsible for providing guidance on estimating the GHG emission reductions and co-benefits from projects receiving monies from the Greenhouse Gas Reduction Fund (GGRF). This guidance includes quantification methodologies, co-benefit assessment methodologies, and benefits calculator tools. CARB develops these methodologies and tools based on the project types eligible for funding by each administering agency, as reflected in the program expenditure records available at: www.arb.ca.gov/cci-expenditurerecords. For CARB's Funding Agricultural Replacement Measures for Emissions Reductions (FARMER) Program, CARB developed this FARMER Quantification Methodology to provide guidance for estimating the GHG emission reductions and selected co-benefits of each proposed project type. This methodology uses calculations to estimate GHG emission reductions from replacing older, higher-emitting agricultural equipment, vehicles, or irrigation pump engines with newer, more efficient equipment, vehicles, or irrigation pump engines; GHG emissions reductions from replacing internal combustion utility terrain vehicles (UTV) with zero-emission UTVs; and GHG emissions associated with the implementation of FARMER projects. The FARMER Benefits Calculator Tool automates methods described in this document, provides a link to a step-by-step user guide with project examples, and outlines documentation requirements. Projects will report the total project GHG emission reductions and co-benefits estimated using the FARMER Benefits Calculator Tool as well as the total project GHG emission reductions per dollar of GGRF funds awarded. The FARMER Benefits Calculator Tool is available for download at: http://www.arb.ca.gov/cci-resources. Using many of the same inputs required to estimate GHG emission reductions, the FARMER Benefits Calculator Tool estimates the following co-benefits and key variables from FARMER Program projects: Particulate Matter (PM) 2.5 Reductions (pounds (lbs)), Nitrogen Oxides (NOx) Reductions (lbs), Reactive Organic Gas Reductions (lbs), Diesel PM Reductions (lbs), Fossil Fuel Use Reductions (gallons), Fossil Fuel Based Energy Use Reductions (kilowatt-hours (kWh)), and Fuel Savings (dollars). Key variables are project characteristics that contribute to a project's GHG emission reductions and signal an additional benefit (e.g., criteria pollutant emission reductions, fuel use reductions). Additional co-benefits for which CARB assessment methodologies were not incorporated into the FARMER Benefits Calculator Tool may also be applicable to the project. Applicants should consult the FARMER Guidelines, solicitation materials, and agreements to ensure they are meeting FARMER programmatic requirements. The FARMER Guidelines are available at: www.arb.ca.gov/farmer. ### **Methodology Development** CARB developed this Quantification Methodology consistent with the guiding principles of California Climate Investments, including ensuring transparency and accountability. CARB developed this FARMER Quantification Methodology to be used to estimate the outcomes of proposed projects, inform project selection, and track results of funded projects. The implementing principles ensure that the methodology would: - Apply at the project-level; - Provide uniform methods to be applied statewide, and be accessible by all applicants; - Use existing and proven methods; - Use project-level data, where available and appropriate; and - Result in GHG emission reduction estimates that are conservative and supported by empirical literature. CARB assessed peer-reviewed literature and tools and consulted with experts, as needed, to determine methods appropriate for the FARMER project types. CARB also determined project-level inputs available. The methods were developed to provide estimates that are as accurate as possible with data readily available at the project level. In addition, the University of California, Berkeley, in collaboration with CARB, developed assessment methodologies for a variety of co-benefits such as providing cost savings, lessening the impacts and effects of climate change, and strengthening community engagement. As they become available, co-benefit assessment methodologies are posted at: www.arb.ca.gov/cci-cobenefits. ¹ California Air Resources Board. www.arb.ca.gov/cci-fundingguidelines #### **Tools** The FARMER Benefits Calculator Tool relies on CARB-developed emission factors. CARB has established a single repository for emission factors used in CARB benefits calculator tools, referred to as the California Climate Investments Quantification Methodology Emission Factor Database (Database), available at: http://www.arb.ca.gov/cci-resources. The Database Documentation explains how emission factors used in CARB benefits calculator tools are developed and updated. The FARMER Benefits Calculator Tool must be used to estimate the GHG emission reductions and co-benefits of the proposed project. The FARMER Benefits Calculator Tool can be downloaded from: http://www.arb.ca.gov/cci-resources. ### Section B. Methods The following section provides details on the methods supporting emission reductions in the FARMER Benefits Calculator Tool. #### **Project Type** CARB developed the following project types that meet the objectives of the FARMER Program and for which there are methods to quantify GHG emission reductions²: - 1. On-road heavy-duty truck replacement and repower projects, includes both the Carl Moyer Program-eligible and FARMER project categories. - Off-road equipment replacement and repower projects. In some cases, the replacement equipment is no longer available at similar horsepower ratings to the baseline equipment so the procurement of the higher horsepower equipment is allowed (additionally, multiple pieces of equipment may be scrapped to make the project more cost-effective, also referred to as "2 (or more)-for-1"); - 3. Replacement and repower for agricultural pump engines; - 4. Rebates for the purchase of zero-emission utility terrain vehicles (UTV); and - 5. Agricultural Trade-Up (Ag Trade-Up) Pilot, consisting of (1) replacing off-road equipment with new off-road equipment, and (2) replacing off-road equipment with the old off-road equipment that was replaced in (1). ### **General Approach** Methods used in the FARMER Benefits Calculator Tool for estimating the GHG emission reductions and air pollutant emission co-benefits by project type are provided in this section. The Emission Factor Database Documentation explains how emission factors used in CARB benefits calculator tools are developed and updated. These methods account for GHG emission reductions from replacing older
farm equipment with newer, more efficient equipment. In general, the GHG emission reductions are estimated in the FARMER Benefits Calculator Tool using the approaches in Table 1. The FARMER Benefits Calculator Tool also estimates air pollutant emission co-benefits and key variables using many of the same inputs used to estimate GHG emission reductions. November 9, 2018 Page 4 _ ²FARMER Program Guidelines: https://ww2.arb.ca.gov/resources/documents/farmer-program-guidelines ### Table 1. General Approach to Quantification by Project Type ### Single Transaction Project Types (#1-4) Emission Reductions = Baseline Equipment/Vehicle Emissions – Replacement Equipment/Vehicle Emissions ### 2-or-more for 1 Transaction Project Types (#2-3) Emission Reductions = $\sum_{i=1}^{N} Baseline Equipment/Vehicle Emissions$ — Replacement/Equipment Emissions *N* = # of baseline equipment/vehicles being scrapped ### Double Transaction Project Types (#5) Emission Reductions = (Baseline Equipment/Vehicle Emissions – Replacement Equipment/Vehicle Emissions) + (Baseline Equipment/Vehicle Emissions – Replacement Equipment/Vehicle Emissions) More specifically, the FARMER Benefits Calculator Tool calculates estimates for GHG emissions reductions and air pollutant emission co-benefits using two methods for each of the project types: - 1. Equations and methods from the Carl Moyer Program³. - 2. Equations and methods from previously existing CARB methodologies or Calculator Tools. For all calculations, there are two pieces of equipment of interest: - 1. The equipment/vehicle in use i.e., the "baseline" vehicle/equipment. - 2. The newer, replacement equipment/vehicle. Replacement, repower, and retrofitted (reconditioned) equipment/vehicles are collectively referred to as the "replacement" in the equations listed in this document. Note: the Carl Moyer Guidelines often refer to these equipment/vehicles as "reduced". ³ Carl Moyer Program Guidelines: https://www.arb.ca.gov/msprog/moyer/guidelines/current.htm # A. Weighted Emissions Reductions and Maximum Grant Amount of FARMER Projects ### 1. Determine the weighted air pollutant emission reductions Total weighted air pollutant emission reductions from FARMER projects are determined by taking the sum of the project's annual pollutant reductions using Equation 1. While NOx and ROG emissions are given equal weight; emissions of combustion PM10 (such as diesel exhaust PM10 emissions) have been identified as a toxic air contaminant and thus carry a greater weight in the calculation. | Equation 1: Weighted Emission Reductions | | | | | | | |--|---|---|--|--|--|--| | WER = | $WER = ER_{NOx} + ER_{ROG} + 20 \times ER_{PM}$ | | | | | | | Where,
WER | = | Annual weighted emissions reductions Annual NOx emission reductions | <u>Units</u>
US tons/year | | | | | ER _{NOx}
ER _{ROG}
ER _{PM} | =
=
= | Annual ROG emission reductions Annual PM emission reductions | US tons/year
US tons/year
US tons/year | | | | ### 2. Determine the maximum grant amount The maximum grant amount is determined to be the lowest result of the two following equations: Equation 2 and Equation 3. Moreover, additional funding caps are applicable to different project types. Please refer to the FARMER Program Guidelines and/or Carl Moyer Programs for more information regarding funding caps for Heavy Heavy-Duty, Medium Heavy-Duty, trucks with low NOx standards, among others. | Equation | Equation 2: Potential Grant Amount at applicable Cost-Effectiveness Limit | | | | | |----------|---|--|----------|--|--| | PGA = CL | ×WEI | $R \times \frac{1}{CRF}$ | | | | | Where, | | | Units | | | | PGA | = | Potential grant amount | \$ | | | | CL | = | Cost-effectiveness limit | \$/ton | | | | WER | = | Weighted emissions reduction of replacing the baseline | ton/year | | | | | | equipment | | | | | CRF | = | Capital Recovery Factor | Unitless | | | | Equation 3:
Cost | Poter | ntial Grant Amount based on Maximum Percentage of E | Eligible | |---------------------|--------|---|--------------| | $PGA = C_{Replo}$ | acemen | $_{t} \times PE$ | | | Where, | | | <u>Units</u> | | PGA | = | Potential grant amount | \$ | | Creplacement | = | Cost of replacement technology | \$ | | PE | = | Maximum percentage of eligible cost as specified in the | % | | | | FARMER Program Guidelines and/or Carl Moyer | | | | | Program Guidelines | | ⁴ Please refer to the FARMER Program Guidelines and/or Carl Moyer Programs for more information regarding applicability # B. Emissions Reductions from On-Road Heavy-Duty Truck Replacement and Repower Projects The FARMER Benefits Calculator tool calculates estimates of GHG emissions reductions and air pollutant emission co-benefits using each of the project types. The following subsections presents the equations and methods from the Carl Moyer Program and existing CARB methodologies or Calculator Tools used for On-Road Heavy-Duty Truck Replacement and Repower Projects (Trucks). ### 1. GHG Equations Equation 4 shows the GHG emission reductions that occur over the project's entire quantification period. Using Equation 5, the GHG emission reductions from on-road heavy-duty truck replacement and repower projects are estimated as the difference between the baseline and replacement scenarios while accounting for annual vehicle miles traveled. Equation 6 is used to determine the estimated annual fuel consumption in the baseline and replacement scenarios. | • | Equation 4: Emission Reductions from On-Road Heavy-Duty Truck Projects (Quantification Period) | | | | | |-------------------------------------|--|--|-------------------------|--|--| | $QPER_{pollutant}$ | = QP | \times $ER_{pollutant}$ | | | | | Where,
QPER _{pollutant} | = | Emission reductions over quantification period | <u>Units</u>
MTCO2e⁵ | | | | QP | = | Quantification period | years | | | | ER _{pollutant} | = | Annual emission reductions | MTCO2e/yr | | | November 9, 2018 Page 8 _ ⁵ Metric tons of carbon dioxide equivalent (MTCO2e) ### **Equation 5: Emission Reductions from On-Road Heavy-Duty Truck Projects** $$ER_{pollutant} = ((FC_{baseline} \times CC_{baseline fuel}) - (FC_{replacement} \times CC_{replacement fuel})) \times \frac{1 \, MTCO2e}{1,000,000 \, g}$$ Where, $ER_{pollutant}$ = Emission reductions of replacing the baseline MTCO2e/yr truck $FC_{baseline}$ = Fuel consumption of the baseline truck gal/yr $CC_{baseline\ fuel}$ = Carbon content of baseline fuel type gCO2e/DGE FC_{replacement} = Fuel consumption of the replacement truck gal/yr CC_{replacement fuel} = Carbon content of replacement fuel type gCO2e/DGE ### **Equation 6: Fuel Consumption for the Baseline and Replacement Truck** $$FC_i = \frac{AA}{MPG_i}$$ Where, <u>Units</u> FC = Fuel consumption gallons/year AA = Annual activity miles/year MPG = Fuel economy miles/gallon *i* = Baseline or Replacement ⁶ If carbon content for the baseline and replacement fuel types is CNG or RNG, it is converted to diesel gallon equivalent (DGE) for the GHG emissions calculations step. ### 2. Criteria and Toxic Air Pollutant Equations Estimates of individual air pollutant emission reductions from on-road heavy-duty truck replacement and repower projects are calculated. Equation 7 shows the air pollutant emission reductions that occur over the project's entire quantification period. Based upon Carl Moyer Program methods, individual air pollutant emission reductions are estimated as the difference between the baseline and replacement scenarios using Equation 8. Gross Vehicle Weight Rating, Model Year, and NOx standards are used as lookup inputs to ascertain emission factors and deterioration rates from the Carl Moyer Program Guidelines. The following calculations are repeated for each type of pollutant – i.e., NOx, ROG, and PM10. ### **Equation 7: Emission Reductions from On-Road Heavy-Duty Truck Projects** (Quantification Period) $$QPER_{pollutant} = QP \times ER_{pollutant} \times 2000 \frac{lbs}{US ton}$$ Where,Units $QPER_{pollutant}$ = Emission reductions over quantification periodlbsQP= Quantification periodyears *ER*_{pollutant} = Annual emissions reductions for the replacement US tons/year truck ### **Equation 8: Emission Reductions from On-Road Heavy-Duty Truck Projects** $ER_{pollutant} = AEP_{baseline} - AEP_{replacement}$ Where,Units $ER_{pollutant}$ = Annual emission reductionsUS tons/year $AEP_{baseline}$ = Annual emissions for the baseline truckUS tons/year $AEP_{replacement}$ = Annual emissions for the replacement truckUS tons/year Equation 9 is used to determine the estimated annual air pollutant emissions in the baseline and replacement scenarios, using respective values for emission factors and mile-based deterioration product. | Equation | Equation 9: Annual Emissions for Baseline and Replacement Truck | | | | | | |-------------|---|--|--------------|--|--|--| | $AEP_i = ($ | $AEP_i = (EF_i + DP_i) \times AA \times \frac{1 \ US \ ton}{907,200 \ g}$ | | | | | | | Where, | | | <u>Units</u> | | | | | AEP | = | Annual emissions for the truck | US tons/year | | | | | EF | = | Zero-mile emission factor for the truck | gram/mile | | | | | DP | = | Mile-based deterioration product for the truck | gram/mile | | | | | AA | = | Annual activity | miles/year | | | | | i | = | Baseline or Replacement | | | | | Equation 10 is used to determine
the mile-based deterioration product in the baseline and replacement scenarios, using respective values for deterioration rate and total equipment activity. | Equation Truck | Equation 10: Mile-Based Deterioration Product for Baseline and Replacement Truck | | | | | | |----------------------|--|--|----------------|--|--|--| | $DP_i = \frac{D}{C}$ | $DP_i = \frac{DR_i \times TEA_i}{10,000}$ | | | | | | | Where, | | | <u>Units</u> | | | | | DP | = | Mile-based deterioration product for the truck | gram/mile | | | | | DR | = | Deterioration rate for the truck | g/mi-10,000 mi | | | | | TEA | = | Total equipment activity of the truck | miles | | | | | i | = | Baseline or Replacement | | | | | Equation 11 is used to determine the total equipment activity in the baseline and replacement scenarios, using respective values for deterioration life. | Equation 11: Total Equipment Activity for the Baseline and Replacement Truck | | | | | | | |--|----------------------------|---------------------------------------|--------------|--|--|--| | $TEA_i = AA$ | $TEA_i = AA_i \times DL_i$ | | | | | | | Where, | | | <u>Units</u> | | | | | TEA | = | Total equipment activity of the truck | miles | | | | | AA | = | Annual activity | miles/year | | | | | DL | = | Deterioration life of the truck | years | | | | | i | = | Baseline or Replacement | | | | | Equation 12 is a modified equation for Total Equipment Activity and is used in the case where the replacement truck is used and not brand new. | Equation ' | Equation 12: Total Equipment Activity for Used Replacement Truck | | | | | |--------------|--|---------------------------------------|--------------|--|--| | $TEA_i = AA$ | $TEA_i = AA_i \times DL_i + COR$ | | | | | | Where, | | | <u>Units</u> | | | | TEA | = | Total equipment activity of the truck | miles | | | | AA | = | Annual activity | miles/year | | | | DL | = | Deterioration life of the truck | years | | | | COR | = | Current Odometer Reading | miles | | | | i | = | Baseline or Replacement | | | | Equation 13 is used to determine the deterioration life in the baseline scenario. | Equation 13: Deterioration Life for the Baseline Truck | | | | | |--|---|--------------|--|--| | $DL_{baseline} =$ | $YR_{replacement} - MY_{baseline} + \frac{QP}{2}$ | <u>Units</u> | | | | Where, | | | | | | DL _{baseline} | Deterioration life of the baseline truck | years | | | | YRreplacement | Expected first year of operation of the replacement truck | year | | | | MY _{baseline} | Baseline engine model year | year | | | | QP | Quantification Period (this is essentially project life or
"project implementation time frame" as denoted in the
Carl Moyer Guidelines) | years | | | Equation 14 is used to determine the deterioration life in the replacement scenario. | Equation 14: | : Deter | ioration Life for the Replacement Truck | | |------------------------|-----------------|---|--------------| | $DL_{replacement}$ | $=\frac{QP}{2}$ | | | | | | | <u>Units</u> | | Where, | | | | | DL _{baseline} | = | Deterioration life of the replacement truck | years | | QP | = | Quantification Period (this is essentially project life or
"project implementation time frame" as denoted in the
Carl Moyer Guidelines) | years | ### a. Two-Step Cost-Effectiveness Calculations It should be noted that in some cases, a project may be eligible for a two-step costeffectiveness calculation. This generally occurs when the replacement equipment/vehicle exceeds (i.e., is cleaner than) the requirements of regulations. To perform the two-step cost-effectiveness calculations, the same criteria and toxic air pollutant equations from the Carl Moyer Program Guidelines are used, but they are performed twice. Rather than performing the calculations to ascertain the emissions as the difference between the baseline equipment/vehicle and the replacement equipment/vehicle, the Calculator Tool will first perform the equations as the difference between the baseline equipment/vehicle and the theoretical equipment/vehicle that the applicant would have had to purchase to be in compliance with regulation. This is considered the first step. The second step then consists of performing the equations as the difference between the theoretical equipment/vehicle that the applicant would have had to purchase to be in compliance with regulation and the replacement equipment/vehicle which is cleaner that the requirement per regulation. Surplus emissions reductions calculated in the first step will be based on the regulation requirements and a \$30,000 cost-effectiveness limit. Surplus emissions reductions (cleaner than required) calculated in the second step will be based on the maximum project life and a \$100,000 cost-effectiveness limit. For a project that is eligible for a two-step calculation, the potential grant amount based on cost-effectiveness limits is determined using Equation 15 by summing the potential grant amount calculated at a \$30,000 cost-effectiveness limit (Step 1) with the potential grant amount calculated at a \$100,000 cost-effectiveness limit (Step 2). | Equation 15: Potential Grant Amount for Two-Step Cost-Effectiveness (CE) | | | | |--|--|--------------|--| | $PGA_{Two-step} =$ | $= PGA_{Step 1} + PGA_{Step 2}$ | | | | Where, | | <u>Units</u> | | | PGA _{Two-Step} | Potential grant amount for a project eligible for a Carl
Moyer Two-Step Cost-Effectiveness Calculation | \$ | | | PGA _{Step 1} | Potential grant amount based on \$30,000 cost-
effectiveness limit | \$ | | | PGA _{Step 2} | Potential grant amount based on \$100,000 cost-
effectiveness limit | \$ | | Using Equation 16, total estimated cost-effectiveness can then be determined from the potential grant amount calculated in Equation 15 and from the annual emissions reductions weighted by two quantification periods as seen in Equation 17. | Equation 16: Total estimated cost-effectiveness | | | | | |---|---|-----------------|--|--| | ECE = PGA | $_{Two-step} \times \frac{CRF_{Step\ 2}}{TWER}$ | | | | | Where, | | <u>Units</u> | | | | ECE | Estimated cost-effectiveness for a Carl Moyer Two-Step
Cost-Effectiveness Calculation | \$ | | | | CRF _{Step 2} | Capital Recovery Factor used in 2nd Step calculation | Unitless | | | | TWER | = Total annual weighted emissions reductions | US
tons/year | | | | Equation 17: To | tal annual weighted emission reductions | | |--------------------------------|---|---------------------------------| | $TWER = WER_{Ste}$ | $_{p \ 1} \left(\frac{QP_{Step \ 1}}{QP_{Step \ 2}} \right) + WER_{Step \ 2} \left(\frac{QP_{Step \ 2}}{QP_{Step \ 2}} \right)$ | | | Where,
TWER = | Total annual weighted emissions reductions | <u>Units</u>
US
tons/year | | WER _{Step 1} = | Weighted emissions reductions from Step 1 Calculations | US
tons/year | | $QP_{Step 1} = WER_{Step 2} =$ | Quantification period from Step 1 Calculations
Weighted emissions reductions from Step 2 Calculations | Years
US
tons/year | | QP _{Step 2} = | Quantification period from Step 2 Calculations | Years | # C. Emissions Reductions from Off-Road Equipment Replacement and Repower Projects The FARMER Benefits Calculator Tool calculates estimates for GHG emissions reductions and air pollutant emission co-benefits for each of the eligible project types. The following subsections presents the equations and methods from the Carl Moyer Program and existing CARB methodologies or Calculator Tools used for Off-Road Equipment Replacement and Repower Projects. ### 1. GHG Equations Equation 18 shows the GHG emission reductions that occur over the project's entire quantification period. To determine GHG emissions for off-road equipment, fuel consumption is calculated for the baseline and replacement equipment and multiplied by the fuel's carbon content using Equation 19. | Equation 18: Emission Reductions from Off-Road Equipment Projects (Quantification Period) | | | | | | |---|---|--|------------------------|--|--| | $QPER_{pollutant}$ = | $QPER_{pollutant} = QP \times ER_{pollutant}$ | | | | | | Where,
QPER _{pollutant} | = | Emission reductions over quantification period | <u>Units</u>
MTCO2e | | | | QP
ER _{pollutant} | = | Quantification period Annual emission reductions | years
MTCO2e/yr | | | It should be noted that while the Carl Moyer methods use the equipment load factors listed in the Carl Moyer Program Guidelines, the GHG equations use a different load factor taken from CARB's *Analysis of California's Diesel Agricultural Equipment
Inventory according to Fuel Use, Farm Size, and Equipment Horsepower*⁷. | Equation to: Emission Roddenions from On Rodd Equipment 1 10,000 | |--| | | | | | | | | Equation 19: Emission Reductions from Off-Road Equipment Projects $$ER_{pollutant} = ((FC_{baseline} \times CC_{baseline fuel}) - (FC_{replacement} \times CC_{replacement fuel}))$$ $$\times \frac{1 MTCO2e}{1,000,000 g}$$ | Where, | | <u>Units⁸</u> | |-----------------------------|---|---------------------------------------| | ERpollutant | = Annual Emission reductions of replacing | MTCO2e/yr | | | the baseline equipment | | | FC _{baseline} | = Fuel consumption of the baseline | gallon/yr, scf/yr | | | equipment | | | CC _{baseline fuel} | = Carbon content of baseline fuel type | gCO2e/gallon, scf/yr | | FCreplacement | = Fuel consumption of the replacement | gallon/yr, scf/yr | | | equipment | • | | CCreplacement fuel | = Carbon content of replacement fuel type | gCO2e/gallon, scf/yr | | , | , ,,, | · · · · · · · · · · · · · · · · · · · | ⁷ Analysis of California's Diesel Agricultural Equipment Inventory according to Fuel Use, Farm Size, and Equipment Horsepower. Link to main page: https://www.arb.ca.gov/msei/ordiesel/agfuelstudy2018.pdf ⁸ For fuel consumption and carbon content, units vary depending of fuel type of baseline and/or replacement equipment/vehicle, respectively. Equation 20 is used to determine the estimated annual fuel consumption in the baseline and replacement scenarios, using respective values for brake specific fuel consumption, maximum rated horsepower, load factor, and fuel efficiency factor. | Equation 20: Fuel Consumption for the Baseline and Replacement Equipment | | | | | | |--|---|--|--------------|--|--| | $FC_i = BSFC_i \times HP_{max,i} \times LF_i \times AA \times FEF_i$ | | | | | | | Where, | | | <u>Units</u> | | | | FC | = | Fuel consumption of the equipment | gallon/year | | | | BSFC | = | Brake specific fuel consumption ⁹ | gal/bhp-hr | | | | HP_{max} | = | Maximum rated horsepower of the equipment | bhp | | | | LF | = | Load factor of the equipment | Unitless | | | | AA | = | Annual Activity | hours/year | | | | FEF | = | Fuel efficiency factor | Unitless | | | | i | = | Baseline or Replacement | | | | ⁹ Where necessary, brake specific fuel consumption (BSFC) values are converted from lb/bhp-hr to gal/bhp-hr using fuel type specific pounds to gallons conversions. For mobile equipment using gasoline as a fuel, BSFC = 18.5 bhp-hr/gal (ref: Table D-21 in the Carl Moyer Guidelines). For non-mobile equipment using gasoline as a fuel, BSFC = 17.5 bhp-hr/gal (ref: Table D-21 in the Carl Moyer Guidelines). For mobile equipment using diesel, engines with less than 100 HP use a BSFC of 0.408 lbs/bhp-hr while those with HP greater than 100 use 0.367 lbs/bhp-hr. This footnote applies to all instances involving a calculation where BSFC is a parameter. Fuel efficiency factor is determined using Equation 21-Equation 22. | Equation 21: Fuel | Efficiency Factor of the Baseline Equipment | | |-------------------------------------|--|--------------------------| | $FEF_{baseline} = 1$ | | | | Where,
FEF _{baseline} = | Fuel efficiency factor of the baseline equipment | <u>Units</u>
Unitless | | Equation 22: F | uel Ef | ficiency Factor of the Replacement Equipment | | | | |------------------------------|---|---|--------------|--|--| | FEF _{replacement} = | $FEF_{replacement} = 1 - (MY_{replacement} - MY_{baseline}) \times 0.005$ | | | | | | Where, | | | <u>Units</u> | | | | FEF _{replacement} | = | Fuel efficiency factor of the replacement equipment ¹⁰ | Unitless | | | | MY _{replacement} | = | Model year of the replacement equipment | | | | | MY _{baseline} | = | Model year of the baseline equipment | | | | $^{^{10}}$ According to work by Grisso et al. (2014), tractor models tested in 2000 were 10-15% more efficient than tractors tested in 1980. Grisso et al. presented no data before 1980 and no data after 2007. Therefore, no efficiency losses are assumed for models before 1980 and no efficiency gains are gained after 2007. 10% gains/20 years = 0.5%/year = 0.005. As seen in Equation 23-Equation 24, the load factor of the replacement equipment is varied up to a certain percentage per data from CARB's diesel agricultural equipment inventory survey and discussed in *Analysis of California's Diesel Agricultural Equipment Inventory according to Fuel Use, Farm Size, and Equipment Horsepower.* | Equation 23: Lo | ad Factor of the Replacement Equipment | | |----------------------------------|---|--------------| | $LF_{replacement} = \frac{F}{2}$ | $\frac{HP_{max,baseline} \times LF_{baseline}}{HP_{max,replacement}}$ | | | Where, | | <u>Units</u> | | LF _{replacement} | Load factor of the replacement equipment | Unitless | | HP _{max, baseline} | Maximum rated horsepower of the baseline
equipment | bhp | | LF _{baseline} | Load factor of the baseline equipment | Unitless | | HP _{max} , replacement | Maximum rated horsepower of the replacement
equipment | bhp | | Equation 24: Load Factor of the Replacement Equipment | | | | | |--|-------------|---|---|--| | $LF_{replacement} = LF_{baseline} \pm \leq LF_{stdev}^{-11}$ | | | | | | Where,
LF _{replacement}
LF _{baseline}
LF _{stdev} | =
=
= | Load factor of the replacement equipment Load factor of the baseline equipment Load factor standard deviation used as adjustment bounds | Units
Unitless
Unitless
Unitless | | ¹¹ Please refer to CARB's *Analysis of California's Diesel Agricultural Equipment Inventory according to Fuel Use, Farm Size, and Equipment Horsepower* to see what standard deviation value applies to a given equipment type. ### 2. Criteria and Toxic Air Pollutant Equations Equation 25 shows the individual air pollutant emission reductions that occur over the project's entire quantification period. The individual air pollutant emission reductions from off-road equipment replacement and repower projects are estimated, based upon methods outlined in the Carl Moyer Program Guidelines, as the difference between the baseline and replacement scenarios using Equation 26. Horsepower, Engine Tier, and Model Year are used as lookup inputs to ascertain emission factors and deterioration rates from the Carl Moyer Program Guidelines. The following calculations are repeated for each type of pollutant – i.e., NOx, ROG, and PM10. ### **Equation 25: Emission Reductions from Off-Road Equipment Replacement and Repower Projects (Quantification Period)** $$QPER_{pollutant} = QP \times ER_{pollutant} \times 2000 \frac{lbs}{US ton}$$ | Where, | | | <u>Units</u> | |---------------------------|---|--|--------------| | QPER _{pollutant} | = | Emission reductions over quantification period | lbs | | QP | = | Quantification period | years | | ER _{pollutant} | = | Annual emission reductions | US tons/yr | ### **Equation 26: Emission Reductions from Off-Road Equipment Replacement and Repower Projects** ``` ER_{pollutant} = AEP_{baseline} - AEP_{replacement} ``` | Where, | | | <u>Units</u> | |----------------------------|---|---|--------------| | ER _{pollutant} | = | Annual emission reductions | US tons/year | | AEP _{baseline} | = | Annual emissions for the baseline equipment | US tons/year | | AEP _{replacement} | = | Annual emissions for the replacement | US tons/year | | | | equipment | | Equation 27 is used to determine the estimated annual air pollutant emissions in the baseline and replacement scenarios, using respective values for emission factors and deterioration product. #### **Equation 27: Annual Emissions for Baseline and Replacement Equipment** $AEP_i = (EF_i + DP_i) \times LF_i \times HP_i \times \frac{AA}{907,200 (g/US ton)}$ Where, Units US tons/year AEP Annual emissions for the equipment EF = Zero-mile emission factor for the equipment g/bhp-hr Hour-based deterioration product for the equipment DPg/bhp-hr LF **Equipment Load Factor** Unitless = HP Maximum rated horsepower of the equipment bhp AA**Annual Activity** hours/year Equation 28 is used to determine the hour-based deterioration product in the baseline and replacement scenarios, using respective values for deterioration rate and total equipment activity. Baseline or Replacement i = | Equation 28: Hour-Based Deterioration Product for Baseline and Replacement Equipment | | | | | |--|-----|--|--------------|--| | $DP_i = DR_i$ | ×TE | iA_i | | | | Where, | | | <u>Units</u> | | | DP | = | Hour-based deterioration product for the equipment | g/bhp-hr | | | DR | = | Deterioration rate for the equipment | g/bhp-hr-hr | | | TEA | = | Total equipment activity of the equipment | hours | | | i | = | Baseline or Replacement | | | Equation 29 is used to determine the total equipment activity in the baseline and replacement scenarios, using respective values for deterioration life. | Equation
Equipme | | otal Equipment Activity for
the Baseline and R | eplacement | |--------------------------------|------------------|---|--| | $TEA_i = A$ | $A \times DL$ | i | | | Where,
TEA
AA
DL
i | =
=
=
= | Total equipment activity of the equipment Annual activity Deterioration life of the equipment Baseline or Replacement | <u>Units</u>
hours
hours/year
years | Equation 30 is used to determine the deterioration life in the baseline scenario. | Equation 30: | Equation 30: Deterioration Life for the Baseline Equipment | | | | | |---|--|---|--------------|--|--| | $DL_{baseline} = YR_{replacement} - MY_{baseline} + \frac{QP}{2}$ | | | | | | | Where, | | | <u>Units</u> | | | | DL _{baseline} | = | Deterioration life of the baseline equipment | years | | | | YRreplacement | = | Expected first year of operation of the replacement equipment | year | | | | MY _{baseline} | = | Baseline engine model year | year | | | | QP | = | Quantification Period (this is essentially project life or "project implementation time frame" as denoted in the Carl Moyer Guidelines) | years | | | Equation 31 is used to determine the deterioration life in the replacement scenario. | Equation 31: | Equation 31: Deterioration Life for the Replacement Equipment | | | | |---|---|--|-------------------------------|--| | $DL_{replacement}$ | $=\frac{QH}{2}$ |)
- | | | | Where,
DL _{replacement}
QP | = | Deterioration life of the replacement equipment
Quantification Period (this is essentially project life or
"project implementation time frame" as denoted in the
Carl Moyer Guidelines) | <u>Units</u>
years
year | | # D. Emissions Reductions from Agricultural Pump Engines Replacement and Repower Projects The FARMER Benefits Calculator Tool estimates GHG emissions reductions and air pollutant emission co-benefits using each of the project types. The following subsections presents the equations and methods from the Carl Moyer Program and existing CARB methodologies or Calculator Tools used for Agricultural Pump Engines Repower Projects. GHG and criteria pollutant calculations will depend on the fuel consumption of the pump and the fuel type that is it using. For the baseline agricultural pump, the allowable fuel types are diesel, gasoline, and alternative fuels. If your equipment is using diesel or gasoline, please use Equation 35 during the fuel consumption calculation step. If your equipment is using an alternative fuel, please use Equation 36 during the fuel consumption calculation step. For the replacement equipment, there is the added option of using an electric pump. In such a case, please refer to and use Equation 37, and Equation 38. ### 1. GHG Equations Equation 32 shows the GHG emission reductions that occur over the project's entire quantification period. Using Equation 33, the difference in GHG emissions between the baseline pump and the replacement pump constitutes the overall reduction. ``` Equation 32: Emission Reductions from Agricultural Pump Engines (Quantification Period) QPER_{pollutant} = QP \times ER_{pollutant} Where, QPER_{pollutant} = Emission reductions over quantification period QPER_{pollutant} = QP \times ER_{pollutant} QPER_{pollutant} = Emission reductions over quantification period years QP = Quantification period ER_{pollutant} = Annual emission reductions MTCO2e/yr ``` | Equation 33: E | Equation 33: Emission Reductions from Agricultural Pump Engines | | | | | |---|---|--------------|--|--|--| | $ER_{pollutant} = GHG_{baseline} - GHG_{replacement}$ | | | | | | | Where, | | <u>Units</u> | | | | | ERpollutant | Emission reductions of replacing the baseline
equipment | MTCO2e/yr | | | | | GHG _{baseline} | Annual GHG emissions for the baseline
equipment | MTCO2e/yr | | | | | GHGreplacement | Annual GHG emissions for the replacement
equipment | MTCO2e/yr | | | | GHG emissions, and subsequently, fuel usage for diesel-powered baseline and replacement equipment are determined using Equation 34-Equation 35, respectively. # Equation 34: Greenhouse Gas Emissions from Gasoline or Diesel Agricultural Pump Engines $$GHG = F \times CC_{fuel} \times \frac{1 MTCO2e}{1,000,000 g}$$ Where,UnitsGHG= Greenhouse gas emissionsMTCO2e/yrFC= Fuel consumptiongal/yr CC_{fuel} = Carbon content (depends on fuel type)gCO2e/gal | Equation 35: Fuel Usage | for Gasoline or | Diesel Agricultural | Pump Engines | |--------------------------------|-----------------|---------------------|--------------| | | | J | | $F = BSFC \times HP \times LF \times AA$ | Where, | | | <u>Units</u> | |--------|---|---|--------------| | FC | = | Fuel consumption | gal/yr | | BSCF | = | Brake specific fuel consumption | gal/bhp-hr | | HP | = | Maximum rated horsepower of the equipment | bhp | | LF | = | Load factor | Unitless | | AA | = | Annual activity | hr/yr | GHG emissions, and subsequently, fuel usage for alternative fuel-powered baseline and replacement equipment are determined using Equation 36. ### Equation 36: Fuel Usage for Alternative Fuels (CNG) Agricultural Pump Engines $$FC_{Alt\ Fuels} = FC_{diesel} \times \frac{ED_{diesel}}{ED_{CNG}}$$ | Where, | | | <u>Units</u> | |-------------------------------|---|---------------------------------------|--------------| | FC _{Alt Fuel} | = | Fuel consumption (Alternative Fuel) | scf/yr | | FC _{gasoline} | = | Fuel consumption (Diesel) | gal/yr | | <i>ED</i> _{gasoline} | = | Energy Density gasoline | MJ/gal | | <i>ED_{CNG}</i> | = | Energy Density compressed natural gas | MJ/scf | In the case where the replacement pump is electric, GHG emissions are calculated based on electricity use using Equation 37. Electricity use is calculated based on the fuel usage of the existing baseline pump using Equation 38. ### **Equation 37: Greenhouse Gas Emissions from Electric Agricultural Pump Engines** $$GHG = EU_{replacement} \times CC_{GE} \times \frac{1 MTCO2e}{1,000,000 g}$$ | Where, | | | <u>Units</u> | |---------------------------|---|--|--------------| | GHG | = | Greenhouse gas emissions | MTCO2e/yr | | EU _{replacement} | = | Electricity use of the replacement equipment | kWh/yr | | CC_{GE} | = | Carbon Content of grid electricity | gCO2e/kWh | ### **Equation 38: Electricity Usage for Electric Agricultural Pump Engines** $$EU_{replacement} = F_{baseline} \times \frac{LHV_{ULSD}}{ED_{electricity}}$$ | Where, | | | <u>Units</u> | |---------------------------|---|---|--------------| | EU _{replacement} | = | Electricity use of the replacement equipment | kWh/yr | | F baseline | = | Fuel usage of the baseline equipment | gal/yr | | <i>LHV_{ULSD}</i> | = | Lower heating value for ultra low-sulfur diesel | MJ/gal | | ED _{electricity} | = | Energy density of electricity | MJ/kWh | #### 2. Criteria and Toxic Air Pollutant Equations Please refer to the equations and methods described in the "Criteria and Toxic Air Pollutant Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations and methods are utilized. ### a. Two-Step Cost-Effectiveness Calculations Please refer to the description regarding two-step cost-effectiveness calculations in the "Criteria and Toxic Air Pollutant Equations" subsection of the "Emissions Reductions from On-Road Heavy-Duty Truck Replacement and Repower Projects" section. ### E. Emissions Reductions from Zero-Emission Utility Terrain Vehicles Rebates The FARMER Benefits Calculator tool calculates estimates for GHG emissions reductions and air pollutant emission co-benefits using each of the project types. The following subsections presents the equations and methods from the Carl Moyer Program and existing CARB methodologies or Calculator Tools used for rebates for the purchase of Zero-Emission Utility Terrain Vehicles. ### 1. GHG Equations Equation 39 shows the GHG emission reductions that occur over the project's entire quantification period. Using Equation 40-Equation 41, GHG emissions are calculated based on fuel usage. Fuel usage for baseline vehicles and electricity usage for replacement vehicles are determined using Equation 42, Equation 43, and Equation 44, respectively. | Equation 39: Emission Reductions from Rebates for the Purchase of Zero-
Emission Utility Terrain Vehicles (Quantification Period) | | | | | |--|-----|--|-------------------------|--| | $QPER_{pollutant} = QP \times ER_{pollutant}$ | | | | | | Where,
QPER _{pollutant} | = | Emission reductions over quantification period | <u>Units</u>
US tons | | | QP
ER _{pollutant} | = = | Quantification period Annual emission reductions | years
US tons/yr | | | Equation 40: Emission Reductions from Rebates for the Purchase of Zero-
Emission Utility Terrain Vehicles | | | |
--|------------|--|--------------| | $ER_{pollutant} = G$ | HG_{bas} | $_{eline}-\ GHG_{replacement}$ | | | Where, | | | <u>Units</u> | | ERpollutant | = | Annual emission reductions | MTCO2e/yr | | GHG _{baseline} | = | Annual GHG emissions for the baseline equipment (fuel type dependent) | MTCO2e/yr | | GHGreplacement | = | Annual GHG emissions for the replacement equipment (fuel type dependent) | MTCO2e/yr | ### Equation 41: Greenhouse Gas Emissions from Gasoline, Diesel, or Alternative Fuels Utility Terrain Vehicles $$GHG = FC \times CC_{fuel} \times \frac{1 \, MTCO2e}{1,000,000 \, g}$$ Where, Units GHG = Greenhouse gas emissions MTCO2e/yr FC = Fuel consumption gal/yr, scf/yr CC_{fuel} = Carbon content (depends on fuel type) gCO2e/gal ### **Equation 42: Fuel Usage for Baseline Utility Terrain Vehicles (diesel or gasoline)** $FC = BSFC \times HP \times LF \times AA \times GP$ | Where, | | | <u>Units</u> | |--------|---|---|--------------| | FC | = | Fuel consumption | gal/yr | | BSFC | = | Brake specific fuel consumption (fuel specific) | lb/bhp-hr | | HP | = | Maximum rated horsepower of the equipment | bhp | | LF | = | Load factor | Unitless | | AA | = | Annual activity | hr/yr | | GP | = | Gallon to pound conversion (fuel specific) | gal/lb | ### Equation 43: Fuel Usage for Baseline Utility Terrain Vehicles (alternative fuels)¹² $$FC = HP \times LF \times AA \times BSFC_{gasoline} \times GP \times \frac{ED_{gasoline}}{ED_{CNG}}$$ | Where, | | | <u>Units</u> | |-------------------------------|---|--|--------------| | FC | = | Fuel consumption | gal/yr | | HP | = | Maximum rated horsepower of the equipment | bhp | | LF | = | Load factor | Unitless | | AA | = | Annual activity | hr/yr | | BSFC | = | Brake specific fuel consumption (gasoline) | lb/bhp-hr | | GP | = | Gallon to pound conversion (fuel specific) | gal/lb | | <i>ED</i> _{gasoline} | = | Energy density of gasoline | MJ/gal | | ED _{CNG} | = | Energy density of CNG | MJ/scf | ### **Equation 44: Electricity Usage for Zero-Emission Utility Terrain Vehicles** $$EU_{replacement} = FC_{baseline} \times \frac{LHV_{CaRFG}}{ED_{electricity}} \times \frac{1}{EER}$$ | Where, | | | <u>Units</u> | |--------------------------|---|---|--------------| | EUreplacement | = | Electricity use of the replacement vehicle | kWh/yr | | FC _{baseline} | = | Fuel Consumption of the baseline vehicle | gal/yr | | LHV _{CaRFG} | = | Lower heating value for California reformulated | MJ/gal | | | | gasoline | | | ED _{elecricity} | = | Energy density of electricity | MJ/kWh | | EER | = | Energy Efficiency Ratio relative to gasoline | Unitless | ### 2. Criteria and Toxic Air Pollutant Equations Please refer to the equations and methods described in the "Criteria and Toxic Air Pollutant Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations and methods are utilized. ¹² CNG is the fuel used for alternative fuels. ## F. Emissions Reductions from Agricultural Trade-Up Pilot Projects The Agricultural Trade-Up (Ag Trade-Up) Pilot project type is essentially two Off-Road equipment replacement and repower projects paired together. Projects under this category are limited to diesel as a fuel type. In the first transaction (known as Transaction #1), a farmer purchases new equipment (e.g., a Tier 4) to replace his older equipment (e.g., Tier 3). However, rather than scrapping the still functioning older baseline equipment, the first farmer can now transition his baseline vehicle to a different farmer enabling him/her to scrap their much older equipment (e.g., Tier 0 or Tier 1). In the Ag Trade-up, the baseline equipment from the first transaction effectively becomes the replacement vehicle in the second transaction. #### **Transaction #1** The FARMER Benefits Calculator tool calculates estimates for GHG emissions reductions and air pollutant emission co-benefits using each of the project types. The following subsection refers to the equations and methods used to determine GHG and criteria and toxic air pollutant emissions for Transaction #1 in the Ag Trade-Up project type. ### 1. GHG Equations Please refer to the equations and methods described in the "GHG Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations and methods are utilized. #### 2. Criteria and Toxic Air Pollutant Equations Please refer to the equations and methods described in the "Criteria and Toxic Air Pollutant Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations and methods are utilized. #### **Transaction #2** The FARMER Benefits Calculator tool calculates estimates for GHG emissions reductions and air pollutant emission co-benefits using each of the project types. The following subsection refers to the equations and methods used to determine GHG and criteria and toxic air pollutant emissions for Transaction #2 in the Ag Trade-Up project type. ### 1. GHG Equations Please refer to the equations and methods described in the "GHG Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations and methods are utilized. #### 2. Criteria and Toxic Air Pollutant Equations Please refer to the equations and methods described in the "Criteria and Toxic Air Pollutant Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations and methods are utilized. There are two slight differences: 1) as noted in Equation 45, the Annual Activity that is used to determine the Total Equipment Activity is based on that equipment's original annual activity (i.e., Annual Activity from Transaction #1) with its first owner rather than the annual activity it will have under its second-hand owner. Moreover, to account for the fact that the Replacement equipment in Transaction #2 is used rather than brand new, a modified version of the Deterioration Life calculation is performed as shown in Equation 46. | Equation 45: Total Equipment Activity for the Baseline and Replacement Equipment | | | | | |--|---|---|--------------|--| | $TEA_i = AA \times DL_i$ | | | | | | | | | | | | Where, | | | <u>Units</u> | | | TEA | = | Total equipment activity of the equipment | hours | | | AA | = | Annual activity ¹³ | hours/year | | | DL | = | Deterioration life of the equipment | years | | | i | = | Baseline or Replacement | - | | November 9, 2018 Page 32 _ ¹³For the baseline vehicle/equipment in transaction #1 that will serve as the replacement vehicle/equipment in transaction #2, the Annual Activity used to determine the Total Equipment Activity is based on that equipment's original annual activity with its first owner rather than the annual activity it will have under its second-hand owner. Since methods and equations seen in the Carl Moyer Program Guidelines assume that the replacement vehicle/equipment is brand new, this adjustment is done to account for the fact that the vehicle/equipment in question is used and not brand new. | Equation 46: Deterioration Life for the Replacement Equipment | | | | | |---|---|--------------|--|--| | $DL_{replacement} = YR_{replacement} - MY_{replacement} + \frac{QP}{2}$ | | | | | | Where, | | <u>Units</u> | | | | DLreplacement | Deterioration life of the replacement equipment | years | | | | YR _{replacement} | Expected first year of operation of the replacement
equipment | year | | | | MYreplacement | Replacement engine model year | year | | | | QP | Quantification Period (this is essentially project life or
"project implementation time frame" as denoted in the
Carl Moyer Guidelines) | year | | | ### G. Emissions Reductions from 2 (or-more) for-1 Off-Road Equipment Replacement and Repower Projects This project category is essentially the same as the Off-Road Equipment Replacement/Repower or the Agricultural Pump Engine Replacement/Repower. However, this category allows an applicant to procure a replacement at a different horsepower rating than their baseline if the given horsepower rating is no longer available. Additionally, this category allows for an applicant to scrap more than one baseline equipment to increase cost-effectiveness. The modified equations in this section, with the exception of the fuel efficiency factor, are also applicable to Agricultural Irrigation Pumps. For the first year of the FARMER Program, staff developed a conservative GHG quantification methodology for 2-for-1 projects that mirrors the assumptions made in the Carl Moyer Program and does not account for vehicle or equipment efficiency improvements. Staff intends to fund this project category initially using AB 118 funds and will collect and analyze usage data from the implemented projects to inform and develop future quantification methodologies that incorporate efficiency improvements. ### 1. GHG Equations Please refer to the equations and methods described in the "GHG Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations
and methods are utilized. However, a notable difference is that rather than scrapping one baseline equipment/vehicle, the applicant could opt to scrap multiple pieces of equipment/vehicles to improve the cost-effectiveness. This is reflected by modifying Equation 19 to be a summation - i.e., Equation 47. ### **Equation 47: Emission Reductions from Off-Road Equipment Projects** $$\begin{split} ER_{pollutant} &= \left(\sum_{i=1}^{N} (FC_{baseline} \times CC_{baseline \ fuel}) - (FC_{replacement} \times CC_{replacement \ fuel})\right) \\ &\times \frac{1 \ MTCO2e}{1,000,000 \ g} \end{split}$$ Where, $\underline{\text{Units}}^{14}$ $ER_{pollutant}$ = Emission reductions of MTCO2e/yr replacing the baseline equipment $FC_{baseline}$ = Fuel consumption of the GGE/yr, DGE/yr, scf/yr baseline equipment $FC_{replacement}$ = Fuel consumption of the GGE/yr, DGE/yr, scf/yr replacement equipment *CC*_{baseline fuel} = Carbon content of baseline gCO2e/GGE,gCO2e/DGE, scf/yr fuel type $CC_{replacement fuel}$ = Carbon content of gCO2e/GGE,gCO2e/DGE, scf/yr replacement fuel type N = # of baseline equipment applicant is scrapping ¹⁴ For fuel consumption and carbon content, units vary depending of fuel type of baseline and/or replacement equipment, respectively. Moreover, the fuel efficiency factor applied to off-road equipment was also modified for the case where the applicant is scrapping more than one baseline equipment to increase the cost-effectiveness. The fuel efficiency is calculated by determining how much newer the replacement is relative to the baseline equipment as seen in Equation 22. However, when multiple baselines are being scrapped, the average model year across all of the baselines is used as demonstrated in Equation 48. | Equation 48: | Fuel Efficiency Factor of the Replacement Equipmen | t | |----------------------------|--|--------------| | FEF _{replacement} | $= 1 - (MY_{replacement} - \frac{\sum_{i=1}^{N} MY_{baseline}}{N}) \times 0.005$ | | | Where, | | <u>Units</u> | | FEF _{replacement} | Fuel efficiency factor of the replacement
equipment¹⁵ | Unitless | | MYreplacement | = Model year of the replacement equipment | Year | | MY _{baseline} | = Model year of the baseline equipment | Year | | N = # of baseli | ine equipment applicant is scrapping | | ¹⁵ According to work by Grisso et al. (2014), tractor models tested in 2000 were 10-15% more efficient than tractors tested in 1980. Grisso et al. presented no data before 1980 and no data after 2007. Therefore, no efficiency losses are assumed for models before 1980 and no efficiency gains are gained after 2007. 10% gains/20 years = 0.5%/year = 0.005. Lastly, in determining the load factor for the replacement equipment, a weighted average based on usage (i.e., Annual Activity) of the horsepower values for the baseline equipment being scrapped is used. Equation 49 is a modified version of Equation 23. | Equation 49: Load Factor of the Replacement Equipment | | | | | |---|--|--------------|--|--| | $LF_{replacement} = -$ | $\frac{\sum_{i=1}^{N} HP_{max,baseline} \times AA}{\sum_{i=1}^{N} AA} \times LF_{baseline}}{HP_{max,replacement}}$ | | | | | Where, | | <u>Units</u> | | | | LF _{replacement} | Load factor of the replacement equipment | Unitless | | | | HP _{max, baseline} | Maximum rated horsepower of the baseline
equipment | bhp | | | | AA | = Annual Activity | hours/year | | | | LF _{baseline} | Load factor of the baseline equipment | Unitless | | | | HP _{max} , replacement | Maximum rated horsepower of the replacement
equipment | bhp | | | ### 2. Criteria and Toxic Air Pollutant Equations Please refer to the equations and methods described in the "Criteria and Toxic Air Pollutant Equations" subsection of the "Emissions Reductions from Off-Road Equipment Replacement and Repower Projects" section. The same equations and methods are utilized. However, one notable difference is that rather than scrapping one baseline equipment/vehicle, the applicant could opt to scrap multiple pieces of equipment/vehicles to improve the cost-effectiveness. This is reflected by modifying Equation 26 to be a summation — i.e., Equation 50. | Equation 50: Emission Reductions from Off-Road Equipment Replacement and Repower Projects | | | | |---|--|--------------|--| | $ER_{pollutant} = \sum_{i=1}^{N}$ | $AEP_{baseline} - AEP_{replacement}$ | | | | Where, | | <u>Units</u> | | | ERpollutant | Annual emission reductions | US tons/year | | | <i>AEP</i> _{baseline} | = Annual emissions for the baseline equipment | US tons/year | | | AEP _{replacement} | Annual emissions for the replacement
equipment | US tons/year | | | N = # of baseline equipment applicant is scrapping | | | | ### Section C. References The following references were used in the development of this Quantification Methodology and the FARMER Benefits Calculator Tool. California Air Resources Board. (2018). Analysis of California's Diesel Agricultural Equipment Inventory according to Fuel Use, Farm Size, and Equipment Horsepower. https://ww2.arb.ca.gov/resources/documents/cci-quantification-benefits-and-reporting-materials California Air Resources Board. (2018). CCI Quantification Methodology Emission Factor Database. Retrieved from: https://ww2.arb.ca.gov/resources/documents/cci-quantification-benefits-and-reporting-materials California Air Resources Board. (2017). 2017 Off-road Diesel Emission Factors. https://www.arb.ca.gov/msei/ordiesel.htm California Air Resources Board. (2017). The Carl Moyer Program Guidelines. https://www.arb.ca.gov/msprog/moyer/guidelines/current.htm Grisso, R., Perumpral, J., Roberson, G., Pitman, R. *Predicting Tractor Diesel Fuel Consumption*. Retrieved from: http://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/442/442-073/442-073_pdf.pdf